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ABSTRACT 
 

 

Through a case study, the paper presents an example of application of surface-wave analysis for
the assessment of the ground compaction process accomplished in order to stabilize a harbour
bank. After briefly recalling the fundamental points characterizing the adopted technique,
seismic data acquired before and after the soil compaction are analyzed by means of the Full
Velocity Spectrum approach and compared also with the penetrometer data commonly adopted
to assess the performances of the compaction process.  
The results demonstrate that the analysis of surface-wave propagation represents an efficient and
non-invasive tool for efficiently and reliably determining the near-surface characteristics also in
a time-lapse perspective. 
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The MASW technique is often meant as the
analysis of the Rayleigh-wave modal dispersion
curves which can be identified by considering the data
recorded by a certain number of vertical geophones.
The analysis of the data acquired through such
a classical single-component approach, can reveal
problematic since a number of issues can actually
occur and lead to ambiguous data interpretations and,
consequently, erroneous subsurface models - for
a wider scenario see for instance O'Neill and
Matsuoka (2005) and Dal Moro (2014). For these
reasons, various authors have for instance considered
Love waves as well (Winsborrow et al., 2003; O'Neill
et al., 2006; Safani et al., 2005; Dal Moro, 2014). 

In general terms, the solution to this sort of
problems is in fact represented by the acquisition of
multi-component data and by analyses performed
while considering the entire velocity spectrum (or the
so-called effective dispersion curve) and not the
interpreted modal curves (Dal Moro et al., 2014;
2015a). 

All the above-mentioned methodologies rely on
the acquisition of multi-channel data, which
necessarily require long and relatively-complex

1. INTRODUCTION 

The analysis of Surface-Wave (SW) propagation
is used to investigate the subsurface since the 20’s
(Gutenberg, 1924). While first and classical works
relate to crustal studies (Evison et al., 1959; Novotný
et al., 1997), a number of NDT (Non-Destructive
Testing) and near-surface applications have been
proposed in the last decades (e.g. Shtivelman, 1999;
Ryden et al., 2001; O'Neill et al., 2006; Forbriger,
2003a; 2003b; Luo et al., 2011; Dal Moro, 2014). 

Depending on the specific goals and site
characteristics, surface wave dispersion can be
analyzed for both active (e.g., MASW - Multichannel
Analysis of Surface Waves) as well as passive
acquisitions (e.g., ReMi [Refraction Microtremors],
SPAC [SPatial AutoCorrelation], ESAC [Extended
Spatial AutoCorrelation], frequency-wave number
analysis, interferometry - Ohori et al., 2002; Poggi
and Fäh, 2010; O’Connell and Turner, 2011). 

In any case, the final outcome is represented by
the subsurface shear-wave velocity (VS) profile
whereas other material properties such as the
compressional-wave velocity (VP) and density cannot
be soundly determined (Xia et al., 1999). 
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Fig. 1 Classical MASW acquisition setting. The seismic perturbation artificially
produced by a seismic source (typically a simple sledgehammer) is acquired
by a certain number of geophones. The analysis of the surface-wave
dispersion eventually allows the reconstruction of the subsurface shear-wave
velocity profile down to a depth which is proportional to the length of the
geophone array. 

Table 1 Acquisition parameters. 

Sampling rate 1000 Hz (1 ms) 
Acquisition length 1 s (then limited to 0.7 s) 
Geophones spacing 2 m 
Minimum offset 5 m 
Sensors 24 vertical 4.5Hz 

geophones 
Stack 4 

 

For the present study, data acquired before and
after the ground compaction process performed via
vibroflotation, were inverted according to the Full
Velocity Spectrum (FVS) approach (Dal Moro, 2014)
and obtained VS values also compared with the
information obtained via penetrometer tests. 

 
2. SITE AND DATA 

The test site is located in the Livorno harbour,
NW-Italy (Fig. 2), an area largely dominated by sandy
deposits occasionally mixed with silty layers and, as
expected for this kind of low-energy coastal
environments and as confirmed by all the geotechnical
data collected in the area, quite homogenous without
relevant lateral variations.  

Data acquisitions were performed using 24
4.5 Hz vertical geophones (classic end-off shooting
configuration shown in Fig. 1), an 8-kg sledgehammer
and the acquisition parameters reported in Table 1. 

Ground compaction was performed by means of
a vibroflotation process down to a depth of 15 m.
During such an operation, horizontal vibrations are
applied with the aim of reducing the inter-particle
friction and increase the overall strength of the
material (for a general overview see for instance
Mcreery and Zepeda, 2014). 

acquisition procedures. On the other side, a different
approach based on the active data acquired by a single
3-component geophone and which can be considered
as an evolution of the classical Multiple Filter
Analysis (Dziewonsky et al., 1969) is also possible
(Dal Moro, 2014; Dal Moro et al. 2015b; 2015c;
2015d). 

For this first exploratory work aimed at
evaluating the potential of surface-wave analysis for
assessing the effect of the ground compaction
procedures commonly adopted in the construction
industry, a very classical setting based on just the
vertical component of Rayleigh waves (traditional
single-component MASW approach - see Fig. 1) was
adopted. 

Because of the high background noise related to
the harbour industrial activities and the saturation of
the sediments (a sequence of soft sediments largely
dominated by sands in a coastal/marine environment),
for the present case it was impossible to consider the
compressional-wave refraction travel times. 

Furthermore, the very nature of surface-wave
propagation and analysis makes the analysis of
surface-wave propagation more suitable for the
purpose. In fact, while body-wave refraction is related
to the presence of horizons where VP (or VSH)
significantly changes, surface-wave propagation
depends on the properties of the material itself and
does not necessarily require the presence of clear
velocity contrasts between different layers.  

In other words (and to consider an extreme case),
Rayleigh waves generate even in a perfectly-
homogenous medium and their propagation depends
on its geomechanical properties (VS, density, quality
factors etc.), while in classical body-wave refraction
studies, the presence of clear contrasts (horizons) is
instead a fundamental assumption. 
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from the VP value on the basis of some well-known
empirical relationships between VP and density
(Gardner et al., 1974). Further details about the
optimization process are reported in Dal Moro et al.
(2007). 

Considering the length of the array (50 m) and
the classical single-component approach here adopted
(analysis of the vertical component of Rayleigh
waves), the obtained VS profiles can be considered
highly reliable down to a depth of about 8-10 m
(down to this depth the solution can be considered as
unique) and approximate (at least15 % uncertainty)
for the next (deeper) 10 m (see also Dal Moro, 2011;
2014). 

Figueres 5, 6 and 7 summarize the results of the
FVS inversion accomplished for the pre- and post-
compaction data. 

By comparing the shear-wave velocity profiles
presented in Figure 7, it is clear that between about 3
and 11 m of depth, the shear-wave velocity increased
by up to 50 %. 

 
4. DISCUSSION AND CONCLUSIONS 

In the previous sections we illustrated the results
of the time-lapse analyses of Rayleigh waves before
and after soil compaction. In order to mutually
validate data and analyses, in this final paragraph we
briefly discuss the results also presenting some
correlations with the geotechnical data obtained by
means of classical penetrometer tests traditionally
adopted to assess the efficiency of the ground
compaction process. 

Figure 8 reports the N30 (number of blows per
30 cm penetration) values before and after the
vibroflotation process. 

In order to evaluate the consistency of the
penetrometer and seismic-data analyses, we
considered four common empirical relationships
between NSPT and VS values (NSPT are obtained
from the N30 values - Lacroix and Horn, 1973;
Spagnoli, 2008).  

We should recall that such relationships are to
some degree a function of the specific type of
sediments and different equations are available for
different materials (for a review on the most common
relationships see for instance Boominathan and
Suganthi (2007); Akin et al., (2011); Thaker and Rao,
2011; Wair et al., 2012). 

Considering the nature of the local sediments, we
adopted the equations pertaining to sandy materials. 

Figure 9 reports the VS estimated from four
common relationships proposed by Imai (1977), JRA
(1980), Hasancebi and Ulusay (2007) and Uma
Maheswari et al. (2010) for sandy materials [for an
overview about the relationships between NSPT and VS

see also ]. 
By comparing these estimated values with the

ones obtained from the inversion of the Rayleigh-
wave dispersion (see previous section and in particular
the VS profiles summarized in Fig. 7), the overall
mutual consistency is apparent. 

A quick preliminary comparison of the pre- and
post-compaction data can be done by plotting
(overlaying) the seismic traces of the two datasets
(Fig. 3).  

Considering that the acquisitions were performed
in a harbour where heavy industrial activities are
constantly going on, the overall background noise
appears definitely acceptable and does not
compromise the analysis of the Rayleigh-wave
dispersion. 

As expected, although some differences are
apparent, the data in the space-time domain does not
allow straightforward and quantitative considerations
about the effect of the applied soil compaction
procedure. However, by transforming the data into the
frequency-velocity domain via phase shift (Dal Moro
et al., 2003), the differences (i.e. the effect of the
ground compaction) become evident. In fact, the
velocity spectra indicate that, at least for frequencies
higher than about 5 Hz, after the compaction process
the Rayleigh-wave phase velocities are larger
(compare Figs. 4a and 4b). 

In order to quantitatively assess the increase in
the subsurface shear-wave velocities induced by the
ground compaction, in the following section, we will
show the results of the phase-velocity spectra
inversion performed according to the Full Velocity
Spectrum (FVS) approach. 

 
3. FVS INVERSION OF PRE- AND POST-

COMPACTION DATA 

The Full Velocity Spectrum (FVS) analysis is
based on the computation of the synthetic seismic
traces (performed for instance via modal summation)
of a tentative model and on their transformation into
the frequency–velocity domain to obtain the related
velocity spectrum. Such a velocity spectrum (obtained
from a synthetic dataset) is then compared with the
one of the field data in the framework of an
optimization scheme aimed at identifying the model
that better matches with the field data (for details see
Dal Moro, 2014 and Dal Moro et al., 2015a). 

This means that the velocity spectrum of the
field data is not interpreted in terms of dispersion
curves (which necessarily represent a subjective
interpretation of the data) and the velocity spectrum is
considered as a whole (i.e. in its entirety). The heavier
computation load required by the FVS approach
mirrors in a more complete analysis that is performed
without a preliminary (and subjective) data
interpretation thus partially leading to a more robust
solution (details and examples are provided in the
above-mentioned publications as well as in Dal Moro
et al., 2015b; 2015d). 

The most important variables considered during
the inversion are clearly the VS and the thickness of
the layers (Xia et al., 1999). In addition to this, the
Poisson's ratios are also considered as variables and
set free to change between 0.25 (typical value for dry
shallow soft sediments) and 0.495 (saturated sands).
For each layer, the VP is computed by combining the
VS and the Poisson's ratio while the density is fixed
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Fig. 7 VS vertical profiles before (light dotted line) and after (darker
continuous line) the vibroflot process (also indicated the standard
deviations). 

Authors are also grateful to three anonymous
reviewers whose comments significantly improved the
overall quality of the manuscript. 
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Fig. 2 Site location (the Livorno Harbour - NW Italy). 

Fig. 3 Seismic traces before and after the soil compaction (on the left the actual amplitudes, on the right the
normalized data). 

Fig. 4 Phase velocity spectra before (on the left) and after (on the right) the vibroflotation process applied in
order to improve the geotechnical properties of the sandy materials characterizing the study area. 
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Fig. 5 FVS inversion of the pre-compaction data:
field (background colours) and synthetic
(overlaying black contour lines) phase-
velocity spectra. The obtained VS vertical
profile is reported in Figure 7. 

Fig. 6 FVS inversion of the post-compaction data:
field (background colours) and synthetic
(overlaying black contour lines) phase-
velocity spectra. The obtained VS vertical
profile is reported in Figure 7. 

Fig. 8 N30 (number of blows per 30 cm penetration)
values before (blue) and after (red) the
ground compaction via vibroflotation. 
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Fig. 9 VS values estimated from the penetrometer data (NSPT) collected before (upper panel) and after (lower
panel) the vibroflotation while considering the 4 empirical relationships proposed for sandy materials by
Imai (1977) [eq.1], JRA (1980) [eq.2], Hasancebi and Ulusay (2007) [eq.3] and Uma Maheswari et al.
(2010) [eq.4]. Compare with the VS profiles presented in Figure 7. 
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